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Platforms Using a Finite Element/Linear Solver 

Interface* 

Colin J. Aro, Evi I. Dube, W. Scott Futralt 

Abstract 
This report describes the implementation of a coupled mechanical/heat transfer simulation using a Finite 
Element Interface (FEI). The FE1 is an abstraction layer, which lies between the application code and its lin- 
ear solver libraries, controlling the set-up and solution of the linear system arising in the finite element sim- 
ulation. The performance and scalability of the ISIS++ FE1 is examined on the ASCI Red and Blue 
machines in the context of the ALE3D finite element simulation code. 

1.0 Introduction 
Complex, highly resolved, 3-D multi-physics simulations, such as those being developed 
for the Department of Energy’s Accelerated Strategic Computing Initiative (ASCI), 
require the use of state-of-the-art massively parallel (MPP) computers. The sheer size and 
computational complexity of these applications demand the efficient implementation of 
scalable multi-physics and linear solver algorithms in order to maximize the performance 
of the MPP architectures on which they run. At the same time, concerns such as ease of 
development and portability demand standardized interfaces (libraries) for the manage- 
ment of certain resources, with MPI[ l] being a prime example of such an interface. 

Linear solvers are key to many of these simulations, often forming the computational ker- 
nel of the application. As such, the data structures and implementation details of a particu- 
lar solver package tend to permeate the application to a very large degree. For example, 
the matrix decomposition across a distributed memory architecture is influenced by the 
matrix data storage format. At the same time, the matrix decomposition is often derived 
from the physical domain decomposition used in the application code. Furthermore, when 
slide surfaces (contact surfaces) are present, the optimal domain decomposition for the 
slide surfaces may differ significantly from that of the physical problem, and may further 
differ from the preferred layout for the matrix solver. The code developer must deal with 
these issues in forming the global matrix and distributing it across processors, keeping in 
mind the particulars of the linear solver package being used. 

Having the details of a particular linear solver permeated throughout an application code 
in this way leads to portability problems and makes the task of changing or modifying the 
linear solver algorithm difficult and time consuming. The ISIS++ Finite Element Interface 
(FEI) being developed at Sandia National Laboratory is designed to address this 
issue[2][3]. The FE1 provides an abstraction layer between the finite element client appli- 

*. This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Liver- 
more National Laboratory under contract number W-7405Eng-48. 

$. Lawrence Livermore National Laboratory, P.O. Box 808, L-098, Livermore, CA, 94551 

1 



cation and the linear solver library. The application code must provide the FE1 with mesh 
geometry, connectivity information, domain decomposition, elemental stiffness matrices, 
physical boundary conditions, and contact information. The FE1 then allocates, distributes 
and assembles the global matrix. The application can choose from a selection of linear 
solver packages implemented under the FEI. The solution values are returned to the appli- 
cation in a node-based* fashion. This abstraction (or translation) layer provides complex 
3-D simulation codes portable plug-and-play ability with a variety of linear solvers in a 
parallel computing environment, facilitating rapid linear solver research. 

In this paper, a heat transfer simulation module is developed for the ALE3D code using 
the ISIS++ FEI. The performance and scalability of the FEI will be examined. Depending 
on the problem, the parallel performance of the simulation code can be strongly influenced 
by the parallel performance of the FEI. Therefore, understanding the FEI’s scalability is 
important in order to tune implicit applications for peak performance. Results will be pre- 
sented of the ASCI Red and Blue machines. 

1.1 Overview of ALE3D 
ALE3D[4][5] is a finite element code being developed at the Lawrence Livermore 
National Laboratory that treats fluid and elastic-plastic response on an unstructured grid. 
The grid may consist of arbitrarily connected hexahedra (Figure l), and the mesh can be 
constructed from disjoint blocks of elements which interact at the boundaries via slide sur- 
faces and other types of boundary conditions. Nodes can be designated as relax nodes and 
ALE3D will adjust their position relative to the material in order to relieve distortion or to 
improve accuracy or efficiency. This relaxation process can allow nodes to cross material 
boundaries and create mixed or multi-material elements 

FIGURE 1. The unstructured grid used by 
ALE3D consists of eight-node bricks. 

The basic computational step consists of 
a Lagrangian step followed by an advec- 
tion (or remap) step. In the Lagrangian 
phase, nodal forces are accumulated and 
an updated nodal acceleration is com- 

puted. The stress gradients and strain rates are evaluated by a lowest order finite element 
method. A diagonal mass matrix is used. Second order accuracy is obtained with a grid 
that is staggered in both space and time. 

The advection (remap) step allows for either a pure Eulerian calculation, in which the 
nodes are placed back in their original positions, or a more complex scheme involving 
mesh relaxation techniques. This nodal motion or relaxation generates inter-element 
fluxes which must be used to update velocities, energies, masses, stresses and other consti- 
tutive properties. This remapping process is referred to as advection. Second order accu- 
rate schemes are required to perform this operation with sufficient accuracy. Additionally, 

5. To avoid confusion, “nodes” will always refer to the finite element mesh. When speaking of processing 
nodes in a parallel environment, “processing nodes” will always be used. 
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it is generally inadequate to allow advection only within material boundaries. ALE3D has 
the ability to treat multi-material elements, thus allowing relaxation to take place across 
material boundaries. 

The interaction at slide surfaces can consist of pure sliding in which there are no tangential 
forces on interface nodes. Alternatively, the nodes may be tied to inhibit sliding entirely, a 
coulomb friction algorithm may be used, or turbulence models may be applied. Voids may 
open or close between the surfaces depending on the dynamics of the problem, and there is 
an option to allow a block to fold back on itself (single-sided sliding). Where no void is 
present, the forces on either side of the slide surface are accumulated and used to produce 
a net acceleration of the nodes on the surface consistent with the center-of-mass motion. In 
this manner, the dynamics of both the fluid and structure are treated in a consistent man- 
ner. The ability to remove slide surfaces allows for the flexibility for advecting across 
these boundaries. 

ALl53D is an example of the next generation of ASCI codes, simulating safety and manu- 
facturing problems. In order for the code to model these types of problems, new code 
physics, including heat transfer modeling capability, must be added to accurately predict 
the responses to hazard scenarios and manufacturing needs. 

1.2 Heat Transfer Formulation 
The heat transfer formulation begins with the heat diffusion equation: 

3T 
PC”% = V~(KVT) + 4 

In this equation, the scalars p , c, , and T represent density, specific heat, and temperature. 

The term 4 is a scalar heat source, while K is a symmetric thermal conductivity tensor. 
The domain of definition is Sz , a bounded subdomain of R3, with appropriate conditions 
prescribed on the boundary, I. 

The heat diffusion equation is multiplied by a test function, pi, and integrated over L2 : 

The divergence theorem is applied after integrating the conduction term by parts, so that 

J(p~~)gidR + I(KVT l V~i)dsZ = ~(~iKVT) l ~~ + lq~id~ 
R n l- !A 

Finally, y = KVT l A is defined to be the heat flux through the boundary, I?. This results 
in 

I( “‘) I PC,,, bide I- (KVT l V~i)d~ = ~~~i~ + ~~~idn 
a sz l- sz 

and is the integral form of the equation used by the ALE3D finite element formulation. 
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The Gale&in formulation is used. The temperature is written as a linear sum of basis func- 
tions: 

nodes 

W, y, z, t> = C $.A 4 y, Z)fjW 
j=l 

Substitution into the integral form of the heat transfer equation gives 

which defines a set of linear equations. This can be written in matrix form by defining 

Mu = /Pcv@i@jd’ 

f i = j40idn + #iYclr 
R r 

so that 

d?+ Mdt+NFir= f 

To model transient behavior, ? is discretized in time and integrated: 

MApn + AtN(?‘” -t aAp> = Atf 

or 

(M + aAtN)Ap = At(f - Npn) (1) 
This defines the linear system to be solved at each timestep. Note that it includes the 
explicit Euler (a = 0 ), implicit Euler (a = 1 ), and Crank-Nicholson (a = 0.5 ) 
schemes. It is further possible to deal with nonlinearities by defining an outer Newton- 
Raphson iteration in the event c, , K , or 4 are functions of temperature. The computations 
in this study use the trilinear basis functions 

The integrals needed to fill the matrices are computed using second order Gaussian 
quadrature. 

1.3 Mechanical/Heat Transfer Coupling 
The ALE3D code currently uses an operator split approach to multi-physics simulation, 
applying a series of alternating mechanical and thermal steps. The mechanical steps move 
the nodes while holding the entropy fixed. The heat transfer steps move heat between the 
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nodes while holding nodal positions fixed. The mechanical energy is modified by the 
change induced by the heat transfer step. Likewise, the thermal energy must be modified 
by the mechanical step, which conducts a change in volume and strain. 

For the constant entropy change in volume, consider the change in temperature from ther- 
modynamics: 

(g), = -($$), = -T($), = -7 

where y is the Gruniesen gamma function. Similarly, the elastic stress-strain component is 
obtained by changing the material deviatoric strain 2 while holding the entropy fixed: 

(g)s = TV@ = 2TV(& , 

Here, t is the deviatoric stress, while ~1 is the shear modulus. The volume and strain con- 
tributions are combined into a single parameter w which is passed from the mechanical 
step to the thermal step: 

AT -= T 

Another mechanism used to influence the temperature change is to add energy directly to 
the thermal equations, via the source terms. This mechanism is used only for plastic work, 
where all of the plastic work energy is deposited as thermal energy. The advantages of the 
parametrized method over the direct addition of additional energy is that it is guaranteed to 
always result in a positive temperature[6], and that the data passed between modules is 
unit-less, thereby reducing the complexity required. 

2.0 Implementation 
ALE3D uses a domain decomposition paradigm so that each processor in the MPP envi- 
ronment owns a subcollection of elements. While elements are owned by distinct proces- 
sors, individual nodes must often be shared (Figure 2). As a practical matter, the lists of 
elements and nodes living on a processor are readily available, as is the list of shared 
nodes and neighbor processors. 

For the setup and solution of the linear system (Eq. l), the FE1 consists of four main steps: 
initialization, loading, solution, and solution return. The first step in the process, initializa- 
tion, teaches the FE1 about the structure of the finite element data, so that it may translate 
this physical structure into an algebraic structure for the underlying sparse matrix. The 
data passed to the FE1 in this phase includes control data defining the types of elements 
used (number of nodes, degrees of freedom), raw element data (element and node IDS, 
connectivity information), control data for special nodes (boundary conditions, shared 
nodes), and constraint relation data (slide surfaces). 

Once the sparse matrix structure has been determined, it can then be populated with finite 
element data according to the standard finite element matrix assembly process. This is the 
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task of the load step. The data passed to the FE1 during this stage includes element arrays 
(stiffness matrices and load vectors), boundary condition data, and constraint relation data. 
At the end of this step, the global matrix is fully assembled and has been modified to 
account for all appropriate boundary conditions and constraint relations. 

Elements owned 1 by processor 1 

Nodes shared by 
processors 1 & 2 

FIGURE 2. The ALE3D domain (grid) 
decomposition assigns elements: to unlque 
processors, but nodes along domain 
boundaries must be shared. Here the red and 
green elements belong to separate processors, 
while the blue nodes are shared. 

The solution step requires control data 
such as convergence tolerance, maxi- 
mum iteration count, and solver/precon- 
ditioner pair. Some of this data is 
necessarily solver dependent, although 
the FE1 seeks to provide reasonable 
defaults whenever possible. After the 
solver is invoked, the solution return step 
converts the raw algebraic data into cor- 
responding finite element data, which is 
returned in a node-based fashion. 

The data needed by the FE1 in each of the four stages is collected in parallel and can be 
passed as aggregate blocks of elements to permit efficient use of cache memory. The 
matrix is distributed across processors using a row matrix abstraction with the decomposi- 
tion based on the original problem domain decomposition. In addition to its natural appli- 
cation-oriented interface, which allows easy and bug-free setup of finite element problems 
in an MPP environment, the FEI’s runtime solver/preconditioner selection permits rapid 
linear solver research in areas where improvement in current solver technology is needed. 

3.0 Computational Results 
The parallel performance and scalability of the FE1 will be examined in this section. The 
test problem will be a 3-D block of aluminum undergoing volumetric heating. The block’s 
position will be fixed at a single node so that the heating causes expansion in the material 
away from the fixed node. The mechanical expansion will result in adiabatic cooling, so 
that both the mechanical-thermal and thermal-mechanical couplings will be exercised., 
Although it contains a relatively simple geometry, this problem is well suited for the task 
at hand, since the scalability of the FEI’s tasks (save the itertative solution of the matrix 
itself) is unaffected by the geometry of the problem. For the matrix solution, a diagonally 
scaled conjugate gradient iteration is extremely effective, often converging in four itera- 
tions for a million zone version of this problem. Thus, for a problem such as this one (i.e. 
for a problem with an “easy” matrix), the total wall clock time will be dominated by the 
FE1 time, which makes it well suited for this study. For problems with more challenging 
matrices, the FE1 accounts for less of the overall wall clock time, but not such a small frac- 
tion that its performance can be totally ignored. 
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This problem is linear, so no Newton-Raphson outer iteration is used. The implicit Euler 
method is used for thermal timestepping, while the explicit mechanical package is used 
with a density scaling option[6] to permit large timesteps without a full implicit mechani- 
cal calculation. Two grid resolutions will be employed for the block, which measures one 
cubic meter: 125 thousand elements (the small block) and one million elements (the big 
block). 

The architectures used are the ASCI Red and Blue machines. ASCI Red[7] is a network of 
over four thousand dual-processor 200 Mhz Pentium Pro chips, with 256K of cache mem- 
ory each. The results presented here use only a single processor per processing node, so 
that the effective processor-to-processor bi-directional bandwidth is 800 megabytes per 
second. ASCI Blue-Pacific[8] consists of 1464 4-way SMP processing nodes divided into 
three “sectors.” The processing nodes can accommodate up to four MPI processes each, 
but these processes are then restricted to the slower IP message passing protocol. This 
leads to additional contention between same processing node MPI processes and can 
result in poor scalability. The processors are 332 Mhz 604e PowerPC chips with 1.5 
gigabytes of memory per processing node (i.e. shared by four processors). The bandwidth 
between processing nodes is 150 megabytes per second. However, when the slower IP 
mode is used, the point-to-point bandwidth drops to 25 megabytes per second, with aggre- 
gate performance (all four processes) at 47 megabytes per second (i.e. all four processes 
cannot achieve 25 Mb/set). This penalty in communication performance will be evident 
when the FE1 scaling is examined. 

3.1 Scaling for Fixed Problem Size 
In this section, the parallel scaling of the FE1 will be examined on the small block. This is 
carried out by decomposing the fixed size block into increasingly more subdomains and 
running with an increasing number of processors. The ALE3D code is run with a single 
domain per processor for the results presented here. 

Table 1 lists average CPU time spent in FE1 routines (excluding the matrix solve). This 
data is gathered as an average over 10 cycles. The statistical standard deviation is given in 
column 2, while column 3 shows the “instantaneous” speedup over the preceding run 
(with half as many processors). 

TABLE 1. Average FE1 times for the small block running on the ASCI architectures 

Red 
Machine 

FEI time Std. Dev. Speedup 

104.99 0.15 N/A 
95.84 0.19 1.10 
35.47 0.02 2.70 
10.92 0.01 3.25 
5.00 0.01 2.18 
2.61 0.01 1.92 

Blue 
Machine 

FE1 time Std. Dev. Speedup 

113.27 0.35 N/A 
95.08 0.71 1.19 
35.44 0.42 2.68 
11.17 0.25 3.17 
8.30 0.89 1.35 
20.45 2.12 0.41 



On the ASCI Red machine, the small block does not scale well using a small number of 
processors, but scales superlinearly with 32 or more processors. This trend continues all 
the way to 256 processors. The FE1 is somewhat communication bound, so the Red 
machine’s large communication bandwidth is paying obvious dividends here.The ASCI 
Blue architecture behaves identically, until reaching 128 processors. The scaling falls off 
rather dramatically thereafter, an obvious consequence of the low communication band- 
width when running in IP mode. When run with a single processor per processing node 
(user space, or US mode), the numbers produced by Blue have similar characteristics to 
those on Red. The obvious drawback to the US mode, however, is the waste of computing 
resources and the resulting smaller processor partition that results. In Figure 3, the perfor- 
mance (inverse of FE1 time) is plotted along with a linear performance curve (for refer- 
ence). 

FIGURE 3. Performance plots for the ASCI Red and Blue machines on the small block. 

This result indicates which processor loadings are likely to be most efficient for larger 
problems. On the Blue architecture, three to five thousand elements per processor appears 
to deliver good FE1 efficiency, while on the Red machine, the FE1 performs efficiently 
with as few as 500 elements per processor. 

3.2 Scaling for Fixed Processor Load 
In this section, the previous result will be repeated on the big block. This will provide 
information as to how the FE1 scales with a fixed number of finite elements per processor, 
running increasingly bigger (finer resolution) simulations. The big block is identical to the 
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small block save the finer resolution. It is used to scale the problem size up and repeat the 
previous result. Runs analogous to those in Table 1 are presented in Table 2. 

TABLE 2. Average FE1 times for the large block running on the ASCI architectures 

Red Blue 
Machine Machine 

Procs. 

64 

~ 

128 
256 

I I 

512 15.260 0.00 10.95 75.88 6.86 0.77 

FE1 time Std. Dev. Speedup 

313.00 47.39 4.45 
139.81 10.97 2.24 
58.16 1.53 2.40 

As with the small block, the problem scales well when the number of processors is varied. 
The ASCI Blue architecture, again running 4 processors per processing node, stops scal- 
ing at approximately the same processor loading: three to five thousand elements per pro- 
cessor. In terms of a constant processor load with increasing problem size, however, the 
problem does not scale well. The best performance achieved by the Blue machine occurs 
in the 32 domain small run and the 256 domain large run. This results in approximately 
3900 finite elements per processor. The FE1 time increases by 65% for the larger calcula- 
tion (Figure 4). 

FIGURE 4. Constant processor load scaling on ASCI Red and Blue. The Red run uses 
approximately two thousand elements per processor, while the Blue run uses four thousand 
elements per processor. 
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For the Red machine, data points were especially hard to come by due to the small mem- 
ory capacity and low I/O performance. Nonetheless, constant load scaling was better than 
the Blue machine. At 15,625 elements per processor, FE1 time increases by 60% (better 
than the Blue machine’s best case) for the larger calculation. At approximately two thou- 
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sand elements per processor, the larger simulation requires 40% more FE1 time. Note that 
this behavior cannot be due to the matrix solve, which is very simple; it is the interface 
that is not scaling well in this situation. Figure 4 plots the performance (inverse of FE1 
time) achieved by the Blue machine at approximately 3900 elements per processor and the 
Red machine at approximately two thousand elements per processor. 

To investigate an extended simulation, the Blue machine (256 processors) was run for 500 
cycles. On average, the FE1 time was 57.91 seconds with a standard deviation of 3.70 sec- 
onds. This result is exactly in line with the FE1 times quoted in Table 2 over an extended 
simulation. The output from this simulation is presented in Figure 5, showing the heating, 
expansion, and subsequent cooling of the block. This illustrates a high-resolution, multi- 
physics, application implemented on an MPP architecture. It’s rapid development and 
portability demonstrate the dividends paid by the FE1 concept. 

FIGURE 5. Temperature plot for the million-element calculation on ASCI Blue. The outer faces 
are expanding and coolii (blue areas) while the fixed node is the last to cool (red area). 

4.0 Conclusions 
This study has examined the performance of the ISIS++ FE1 running million element sim- 
ulations on ASCI MPP architectures. It has shown the FE1 to be communication limited, 
with poor scaling results when inter-processor communication bandwidth is low. Regard- 
less, the FE1 still scales well when each processor is given three to five thousand finite ele- 
ments. This result holds for both the ASCI Red and Blue machines. For applications with 
relatively simple matrices, this result is important in order to achieve good efficiency. For 
applications with more challenging matrices, the FE1 time is a smaller percentage of the 
overall wall clock time, but cannot be ignored when fine tuning implicit applications for 
peak performance on MPP platforms. Finally, the FE1 concept has proven to be useful, 
cutting the time and the effort required to develop, port, or modify the linear solver por- 
tions of the code. 

Research will continue to investigate FEI performance on more difficult simulation geom- 
etries, in particular those with slide surfaces and those with implicit mechanical modeling 
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requirements. For these types of problems, fine resolution, sliding surfaces, distorted ele- 
ments, and regions of low material strength produce a very challenging matrix, so the 
solvers must be as finely tuned as the FEI, in order to permit an efficient simulation. 
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